Motor Efficiency and Power Factor

Motivation

- More than half of all electric energy generated goes to power <u>electric motors</u>.
- Electric motor converts electric power into shaft power. In thermodynamics terms, this is simply converting work from one form to another.
- The Second Law allows electric motors to have a theoretical efficiency of 100%.
- In reality, several types of power loss occur from where electricity leaves power plant to the point where shaft power leaves the motor.

Electric Power Losses

- 1. Transmission and transformer I²R and hysteresis losses of real power component.
- 2. Transmission and transformer losses of imaginary power component.
- 3. Losses in the motor resulting from winding losses, frictional losses, etc.
- Loss 1 can be reduced by transmitting power at higher voltage: Power = V·I and Loss = I²R.
- Same power can be transmitted by increasing V and reducing I: losses are reduced as 1/V².

Electric Power Losses (Cont'd)

- Losses can also be reduced by decreasing R, but this means larger conductors (heavier wire) and copper is expensive.
- Loss 2 can be reduced by lowering imaginary, reactive part of current, which is accomplished by power factor improvement, discussed next.
- Loss 3 can be reduced by using more efficient motors, where electric motor efficiency is defined as:

η = Shaft Power Out/Electric Power In

Motor Ratings

- An electric motor's *nameplate* or rated power is its output power, not its electric input power.
- Electric power consumption is rated power divided by motor efficiency.
- Rated power depends on class of motor (which considers intended duty). Industrial grade motors usually are rated for continuous duty.
- Motor efficiency requirements are set by 1992 Energy Policy Act (EPACT), primarily for larger motors as used in industry and HVAC.

1992 EPACT Selected Full-Load Motor Efficiency Requirements

	Open Motors			Closed Motors		
hp	2 pole	4 pole	6 pole	2 pole	4 pole	6 pole
1		82.5	80.0	72.5	82.5	80.0
5	85.5	87.5	87.5	87.5	87.5	87.5
10	88.5	89.5	90.2	89.5	89.5	89.5
20	90.2	91.0	91.0	90.2	91.0	90.2
50	92.4	93.0	93.0	92.4	93.0	93.0
100	93.0	94.1	94.1	93.6	94.5	94.1
200	94.5	95.0	94.5	95.0	95.0	95.0

AI ARAM

ENGINEERING

Energy Savings through Electric Motor Efficiency Improvement

- EPACT was passed in 1992 but motor efficiency provisions took effect in 1997.
- Commercial, institutional and, particularly, industrial operations use substantial amounts of power for electric motors.
- Although "high" or "premium" efficiencies may have only a few percentage points better efficiencies and may cost thousands of dollars more, they often are good investments.

Example- Elevator Motor

An elevator in an Orange Beach condominium lifts an elevator weighing 5500 lbf at a rate of 5 ft/s. The elevator operates 7 hr/day in APCo summer months and 3 hr/day in winter months using an 85% efficient motor installed when the condo was built. Consider a replacement 95% efficient Baldor Super-E motor costing \$3500 + \$500 installation. Assuming an interest rate of 4%, electricity inflation rate of 4%, overall inflation rate of 2.5%, 40% tax rate, 5-yr depreciation, a 10% tax credit and no salvage value, does it make sense to change motors? The condo is a APCo Rate LPM customer.

Example (Cont'd)

See Elevator Example Excel Spreadsheet

Power Factor Correction

- Electrical loss 2 between power plant and useful work output of motor was the transmission and transformer I²R and hysteresis losses resulting from the imaginary component of the power.
- This loss applies whenever an imaginary component is present- not just for motors.
- Power factor (PF) correction can reduce loss by reducing imaginary component magnitude.
- PF correction is relatively simple and economical, and often yields large energy and cost savings.

What Is Power Factor

- For AC service, total power is the vector sum of the real power and reactive (imaginary) power.
- The total power in units of kVA is given by:
 kVA = Volts * Amps * (N_{ph})^{1/2} * 10⁻³

where Volts and Amps are the measured rms voltage and current and N_{ph} is the number of phases (1 or 3).

 The relation between total power, reactive power and real power is shown in the "power triangle".

Power Factor Triangle

Notes on Power Triangle

- Imaginary component of power is due to imaginary impedance elements in the load.
- Pure resistors have no imaginary component, so current and voltage are "in phase" if impedance consists only of resistance elements.
- Capacitance causes voltage to lead the current, i.e., V reaches maximum before current (leading).
- Inductive impedance causes current to lead voltage, i.e., the voltage reaches maximum behind current (lagging).

Power Triangle Notes (Cont'd)

- The cycle angle by which voltage leads or lags behind the current is called the phase angle, θ.
- By simple trigonometry of the power triangle, the real component of power (in units of kW) is:

 $kW = kVA * \cos \theta$

- Cosine θ is the power factor(PF): **PF = cos** θ
- Similarly, reactive power (in units of kVAR) is:
 kVAR = kVA*sin θ
- Also by the Theorem of Pythagoras:

 $kVA^2 = kW^2 + kVAR^2$

Why IS PF Less than 1?

Many common uses of electricity have inductive components of impedance that produce a lagging power factor:

- induction motors (AC)
- power thyristors for DC motor control
- transformers and voltage regulators
- electric welding equipment
- electric arc and induction furnaces
- neon and fluorescent lights (ballasts)

Why Worry About PF < 1?

 Because V is fixed, then I is proportional to total power (kVA), and kVA = kW/PF.

- The larger phase angle θ between V and I, the smaller PF, the larger kVA and, thus, the larger the current the utility must send over its lines.
- Larger I causes larger I²R losses and requires utility to install larger conductors & transformers.
- Although customer uses same *real* power, the lower PF costs the utility more to provide it.

Results of Low PF

- It costs the utility more to deliver the same real power to a customer with low power factor, so utilities charge a higher rate for low PF, either:
 - a direct penalty-higher charge for lower power factors levels (e.g., PF > 95%, no extra charge; 90
 < PF < 95%, 5% surcharge; 85 < PF < 90%, 10% surcharge, etc.
 - or charge per kVA rather than per kW (APCo).
- The customer also has to buy larger wiring, switches, transformers, etc., because of higher current and kVA.
 ME 416/516

How Can Low PF Be Improved?

- Recall that capacitance and inductive elements have the opposite effect on the phase angle between voltage and current.
- Inductors have negative imaginary impedances, but capacitors have positive imaginary impedances.
- Capacitors can be added to the power circuitry to increase PF, as described in the power triangle diagram following:

Capacitor Sizing

- First step is to measure present (old) kVA and PF, or get them from the power bill.
- Calculate kW: kW = PF_{old} * kVA_{old}
- Calculate system kVAR_{sys}:

$$kVAR_{sys} = \sqrt{kVA_{old}^2 - kW^2}$$

- Identify a target PF_{new}.
- Calculate the new kVA using target PFnew:

$$kVA_{new} = kW/PF_{new}$$

Capacitor Sizing (Cont'd)

 Calculate kVAR_{new} once target PF_{new} is achieved:

$$kVAR_{new} = \sqrt{kVA_{new}^2 - kW^2}$$

 kVAR_{new} is the difference between kVAR_{sys} and the added capacitor's kVAR:

$$kVAR_{new} = kVAR_{sys} - kVAR_{cap}$$

So kVAR of the capacitors to be installed is:

kVAR_{cap} = kVAR_{sys} - kVAR_{new}

Who Is Affected by PF Concerns?

- Most utilities only assess a penalty for low PF for relatively large power users.
- For example, to get rate LPL, APCo customers must have a 1200 kVA minimum capacity (this corresponds to a \$200,000 per year power bill).
- Consequently, most customers to whom PF correction is most important are industrial or large institutional customers (like UA).
- Both categories have large portion of load made up by power supplied to large electric motors and to fluorescent and HID lighting.

Location of Capacitors

- Effective PF correction begins by installing capacitors at largest motors first and then adding capacitors as required at distribution load centers.
- Capacitors typically are not supplied to motors rated less than 20 hp unless these are the largest motors in service.
- Capacitors are normally installed on the load side of the motor starter so that they are effective only when the motor is operating.

Location of Capacitors (Cont'd)

- For motors that reverse, jog, etc., or where motor may at times be driven by the load (elevators, cranes), capacitors are connected on supply line side of motor controls with a separate switch.
- Adding excess capacitance can result in dangerous or damaging capacitor discharge through motor windings after motor is shut off.
- Capacitance must be controlled to match loads to avoid large discharge through motors and to lower PF from too much leading impedance.

Correcting PF of an Individual Motor

One set of following information is needed:

- Nameplate hp, efficiency, PF
- Nameplate hp, efficiency, voltage, full load amps (FLA)
- Nameplate PF, voltage, FLA
- Measured PF, voltage, FLA

Correcting PF of an Individual Motor (Cont'd)

• Get motor kW and kVA using these equations :

kW = hp * 0.746/effic. = kVA * PF

 $kVA = FLA * Voltage * (Nph)^{1/2} * 10^{-3}$

where N_{ph} is the number of phases (1 or 3).

Find the required kVAR capacitor as shown before.

Example

- <u>Given</u>: PF = 0.82 and motor with nameplate info of 100 hp and 94% efficiency.
- **<u>Find</u>**: Capacitor kVAR needed for Pf_{new} = 0.96.
- Sol'n: Calculate present power requirement:
 kW = 0.746 kW/hp*100 hp/0.94 = 79.4 kW
- Calculate present kVA

kVA_{old} = 79.4/0.82 = 96.8 kVA

Calculate present (system) kVAR:

 $kVAR_{svs} = (96.8^2 - 79.4^2)^{1/2} = 55.4 kVAR$

Example (Cont'd)

Calculate new kVA if PF = 0.96 is reached:

kVA_{new} = 79.4 kW/0.96 = 82.7 kVA

 Calculate combined kVAR after capacitor added:

 $kVAR_{new} = (82.7^2 - 79.4^2)^{1/2} = 23.1 kVAR$

Find kVAR of the capacitor to be installed:

kVAR_{cap} = 55.4 - 23.1 = 32.3 kVAR

The nearest standard size would be installed, probably 30 kVAR. A larger std. capacitor than actually needed would be avoided if PF ≅ 1.... ME 416/516